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Reaction-Diffusion Processes of Hard-Core Particles 
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We study a 12-parameter stochastic process involving particles with two-site 
interaction and hard-core repulsion on a d-dimensional lattice. In this model, 
which includes the asymmetric exclusion process, contact processes, and other 
processes, the stochastic variables are particle occupation numbers taking values 
nx = 0, 1. We show that on a ten-parameter submanifold the k-point equal-time 
correlation functions (nx~.. .n~k) satisfy linear differential-difference equations 
involving no higher correlators. In particular, the average density ( n x )  satisfies 
an integrable diffusion-type equation. These properties are explained in terms of 
dual processes and various duality relations are derived. By defining the time 
evolution of the stochastic process in terms of a quantum Hamiltonian H, the 
model becomes equivalent to a lattice model in thermal equilibrium in d +  1 
dimensions. We show that the spectrum of H is identical to the spectrum of the 
quantum Hamiltonian of a d-dimensional, anisotropic, spin-l/2 Heisenberg 
model. In one dimension our results hint at some new algebraic structure behind 
the integrability of the system. 

KEY WORDS: Reaction-diffusion processes; correlation functions; integrable 
models. 

1. I N T R O D U C T I O N  

An interesting class of nonequilibrium problems with a rich dynamical 
behavior is made up of stochastic reaction-diffusion systems. 1~'2> These 
processes may involve one or several species of particles A, B, C, ... and an 
inert state ~ equivalent to the absence of any of the interacting particles. 
Examples of such processes are, to name but a few, coagulation 
A + A ~ A, 13> pa]r annihilation A + A ~ ~,~4~) or two-species annihilation 
A + B ~  ~.(7,8~ Formulated as a lattice model, ~ corresponds to a 

Department of Physics, University of  Oxford, Theoretical Physics, 1 Keble Road, Oxford 
OXI 3NP, U.K. E-mail: schutz@vax.ox.ac.uk. 

243 

0022-4715/95/0400-0243507.50/0 �9 1995 Plenum Publishing Corporation 



244. SchLitz 

vacancy on a site of the lattice and particles, represented by particle occupa- 
tion numbers, may hop in the lattice ( , 4 ~  ~ZL4) and take part in the 
reactions. Such lattice systems are, in general, difficult to treat by rigorous 
means and, correspondingly, considering the vast number of such models, 
relatively few exact results are known. 

Over the past few years the formulation of stochastic processes in 
terms of quantum spin systems has turned out to be a convenient tool 
in the study of nonequilibrium lattice problems (see, e.g., refs. 5, 6, and 
9-14 and references therein). A paradigmatic example is the representation 
of symmetric diffusion of hard-core particles (known as the symmetric 
exclusion process c~5"~6) by the spin-l/2 Heisenberg model (see ref. 9 for 
a detailed discussion). But also asymmetric hopping, (6"~~ multimer 
processes, 15~ and reaction-diffusion processes (6'13'14) have been similarly 
represented. By these means, standard techniques for quantum spin systems 
such as spin-wave theory] 5"~7) Bethe ansatz and related algebraic techni- 
ques, (6. ~ o. ~ 1,13. ~4. ~ s ) global symmetries, (9.12) and Goldstone broken symmetry 
arguments ~5) have given many new results for stochastic systems. 

An intriguing feature of these models is that even though these are 
interacting many-particle systems, some of them are known to give rise 
to closed systems of differential-difference equations for time-dependent 
correlation functions and exact results have been obtained. In one possible 
scenario the time derivative of a k-point correlation function does not 
involve higher-order correlators, or, in other words, one obtains a closed 
set of not more than k coupled, linear, differential-difference equations. 
Some well-known examples of single-species processes where this happens 
are the symmetric exclusion process and symmetric partial exclusion pro- 
cess describing diffusion of particles on a lattice in any dimension, ~9'1~'~6) 
the asymmetric exclusion process describing driven diffusion in one dimen- 
sion, ~2) or the voter model describing annihilation (death) processes and 
decoagulation ~6~ (for details see below). In another scenario, certain sub- 
sets of correlation function decouple from each other. This happens, e.g., in 
the Glauber model, I L9) in random sequential dimer deposition, ~2~ or in the 
generalized models studied in ref. 21. 

This observation raises a number of questions, the most obvious one 
being whether there is a classification of these processes, i.e., a general 
criterion on the reaction and diffusion rates such that the resulting equa- 
tions for the correlation functions decouple. Clearly, the answer depends on 
which correlation functions one wishes to study. Here we consider density 
correlation functions, which are the ones in which one is usually interested. 
Other correlation functions, e.g., exponentials of integrated densities (~2~ or 
particle-string correlation functions, 1~2'2~ give rise to other necessary 
and sufficient equations for the rates leading to decoupled equations. As 
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we shall show below, the quantum Hamiltonian formalism that we use 
throughout this paper is a convenient tool for the derivation of these equa- 
tions [see (3.8)] for the rates and it opens the way to a (partial) physical 
and mathematical understanding of this phenomenon. This is because by 
expressing the process in terms of a quantum Hamiltonian one relates a 
d-dimensional nonequilibrium problem to a (d+l ) -d imens iona l  equi- 
librium problem into which one may have (and in the cases discussed here 
actually has) some insight. Here we study only stochastic processes of hard- 
core particles with a two-site interaction. The corresponding quantum 
Hamiltonian turns out to be that of a generalized spin-l/2 Heisenberg 
model. However, our strategy is easily generalized to many-species models 
or to models with interactions involving more than only two sites. 

In some of the known cases which are contained in our more general 
model the observed decoupling of the correlation functions can be under- 
stood in terms of a dual stochastic process. (15'16) In the case of the (self- 
dual) symmetric exclusion process, duality relates the time-dependent 
k-point density correlation function to the process with a k-particle initial 
state. Because of particle number conservation this is a great simplification 
and many exact results have been obtained in this way. Also for other 
processes duality may be used to derive new results tt6) and so one other 
question we discuss is the existence of dual processes to those which satisfy 
the constraints (3.8) on the rates discussed above. The dual processes that 
we shall obtain involve additional restriction on the rates arising from the 
positivity of the dual rates and conservation of probability in the dual 
process. In any case, the dual process contains only hopping and various 
annihilation terms, but no nonzero particle creation rates. This is another 
way of understanding the decoupling of the correlation functions from 
higher-order correlators. 

One more problem that we shall address, albeit only briefly, is that of 
the integrability of the system. From the structure of the equations derived 
in Section 3 and from the solution of these equations for the one-point 
function (i.e., the density profile) obtained in Section 6 it becomes apparent 
that the system is partially integrable in any space dimension. This means 
that some of the equations for the k-point functions are integrable and 
therefore yield the spectrum of a subspace of the Hamiltonian. In Section 5 
we show that the spectrum of H is identical to that of a spin-l/2 Heisenberg 
Hamiltonian, which, in one dimension, is completely integrable by the 
Bethe ansatz. However, the generalized Hamiltonian H is not related to the 
Heisenberg Hamiltonian by a similarity transformation. The integrability of 
H cannot be derived from the usual Baxterization procedure (22) and the 
algebraic structure underlying the generalized model remains an open 
problem. 
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The paper is organized as follows. In Section 2 we give for the benefit 
of the reader not familiar with the quantum Hamiltonian formalism a full 
discussion of its relation to the usual description of the stochastic process 
in terms of a master equation. We also introduce various definitions and 
relations used later. We define the problem on a hypercubic lattice in d 
dimensions with periodic boundary conditions even though many of the 
results derived later are also valid for other lattices or boundary conditions. 
When appropriate, this is indicated by an additional explicit remark. 
Otherwise one should always think of the periodic hypercubic lattice. In 
Section 3 we derive the equations for the rates such that one obtains linear, 
inhomogeneous differential-difference equations, i.e., equations for the 
k-point correlation functions which are decoupled from higher-order 
correlators. In Section 4 we discuss duality and derive the criteria on the 
existence of a dual process. This leads also to a number of duality relations 
for the correlation functions. In Section 5 we discuss the mapping of the 
stochastic problem to the Heisenberg quantum Hamiltonian and in Section 
6 we calculate the time-dependent density profile with an arbitrary initial 
state. In Section 7 we summarize the main results and present some open 
questions. 

2. S T O C H A S T I C  PROCESSES IN THE 
Q U A N T U M  H A M I L T O N I A N  F O R M A L I S M  

We study one-species exclusion processes in d dimensions, i.e., a 
system of particles on a hypercubic lattice with M sites where each site is 
either empty or occupied by at most one particle. The state space of the 
system is therefore X =  {0, 1 } M and a given state of the system may be 
represented by a configuration _n = {nt, n2 ..... nM}, where n,. = 0, 1 and 1 ~< 
i ~< M labels the sites of the lattice. An alternative possibility is to give the 
set {x~, x2 ..... XN} of occupied lattice sites. In this notation, the empty set 
represents the empty lattice and 1 ~< N ~< M is the total number of particles 
in the configuration. Here x i =  (x~ ~1, Xl 2) . . . . .  X~ d)) is a d-component object 
defining the (integer) coordinates of the particle in the lattice. When 
working on fmite lattices, we shall label each space coordinate by an 
integer 1 ~< x(~ L t~ while for an infinite lattice x ( " ~  Z. For later con- 
venience, it is useful to introduce also the unit vector in the a direction, 
e(O)= (0 I1) ..... 1 ca) ..... O(a)). 

The stochastic dynamics of the system may be defined in terms of a 
master equation for the probability f(_n; t) of finding the configuration 
{n~, n2 ..... nu} at time t. We shall use quantum Hamiltonian language, 
which has proven to be a useful formalism for stochastic processes on 
lattices. Each state _n~X is represented by a vector I_n) (or ]x], ..., XN), 
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with 1 0 ) = l )  being the empty state) and the probability distribution is 
mapped to a state vector 

I f ( t ) )  = ~. f(_n; t ) In )  (2.1) 
n E X  

The vectors I_n) together with the transposed vectors (_n[ form an 
orthonormal basis of (C2) | and the time evolution is defined in terms of 
a linear "Hamilton" operator H acting on this space of dimension 2 M, 

0 
0t If(t)> = - H  I f ( t ) )  (2.2) 

A state at time t = to + z is therefore given in terms of an initial state at 
time to by 

If(t  0 + r ) )  = e - ~  If(to))  (2.3) 

From (2.1) and (2.2) and using f(_n; t ) =  (_n I f ( t )  ) ,  we find that the master 
equation takes the form 

a 
~f(_n; t) = - <_n[ H [ f i t ) )  (2.4) 

Note that 

( s  I f ( t ) )  = ~ f(_n; t ) =  1 (2.5) 
tj~ X 

where 

(s[ = ~. (_n[ (2.6) 
neX 

which expresses conservation of probability. This implies (sl H =  0 for any 
stochastic process. The right eigenvector(s) of H with eigenvalue E o = 0 
and normalized according to (2.5) is (are) the steady state(s) of the 
stochastic process. In general H is not symmetric, which means that the 
rate w(_n; _n')= -(_n[ H I_n') with which a configuration _n' switches to a 
configuration _n is not, in general, equal to its reverse rate w(_n'; _n). As a 
result the stationary distribution(s) S(_n) may be highly nontrivial. The real 
part of all eigenvalues of H is larger than or equal to zero. 

Average values < Q) are calculated as matrix elements of suitably 
chosen operators Q which may be expressed in terms of the usual Pauli 

x.y,~ acting on site j. A complete set of observables are the matrices a i 

822/79/I-2-17 
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occupation numbers nj = 0, 1. Defining projection operators on states with 
a particle on site j of the chain as 

1 _ (0 0)  
n j = ~ ( l - - o ' ~ ) =  0 1 j (2.7) 

one finds that the average density of particles at site j is given by (n j )  = 
(sl nj I f ( t ) ) .  Correlation functions (nx~. . .nx, ) ,  i.e., the probabilities of 
finding particles on the set of sites {x~ ..... x,}, are computed analogously. 
Note that in ordinary quantum mechanics average values would be taken 
as matrix elements between normalized eigenstates of H, i.e., ( Q ) =  
(kl  Q Ik), whereas here an average value is the quantity ( s  I Q I f )  where 
I f )  is (in general) not an eigenstate, but a state with real coefficients 
0 ~<f(n; t)~< 1, (2.1), in the basis spanned by the set { I~)} and normalized 
such that ( s  I f )  = 1. 

For later convenience we also introduce the operators s~ = (a~ +_ iaf)/2. 
In our convention 

(010) 
s i - =  0 j 

creates a particle at site j when acting to the right, while 

(~ 0 ') ,29, s + =  0 j 

annihilates a particle at site j. Note that 

(sl s + = (sl n i and (sl s f  = (sl (1 - n j )  (2.10) 

Introducing the ladder operator S • --= Zj  si~, one may write 

(s[ = (0l e s+ (2.11) 

Using the commutation relations for the Pauli matrices then yields (2.10). 
Now we are in a position to define the stochastic processes we intend 

to study by a quantum Hamiltonian H. We define 

d 
E ul,,, 

j a=l 

with the nearest neighbor reaction matrices 

/a,1 a,2 a,3 al4~ 
_|~ a2: 

tt]~ ~a3~ a32 a33 (/34/ 
\a41 a42 a43 1244/Ij;a) 

(2.12) 

(2.13) 
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acting on nearest neighbor sites j and j + e t"). The sum runs over the whole 
lattice and we take periodic boundary conditions in all space directions, i.e., 
u((~,,....L,o,...j,~,) acts on sites ( j t l ) ,  ..., L(,,) ..... j (d) )  and (jr1) ..... l(a) ..... j (d)) .  
The normalization ~ sets the time scale and is for the purposes of this paper 
of no particular interest. The diagonal elements akk of UI") satisfy 

4 

akk = -- ~ a~,k (2.14) 
k ' = l  
k ' ~ k  

which is imposed by conservation of probability. This implies 

(s[ u] ~ =  0 Vj, a (2.15) 

In order to keep the interpretation of H as defining a stochastic process, 
(2.14) has to be supplemented by the condition akk, >>-0 for the off-diagonal 
matrix elements k :/: k'. 

The processes described by H are reactions changing the configura- 
tions on two nearest neighbor sites. A configuration {n i, ni+e~o~ } changes 
into configurations {n~, n]+e,o, } with rates akk, as follows: 

{0,0} -~a_,~{0, 1} +a31{1, 0} +a4,{1, 1} 

(birth/pair creation) 

{0, 1} -~a]2{0, 0} +a32 {1, 0} +a42{1, 1} 

(death/diffusion/decoagulation) 
(2.16) 

{1,0} ---,a,3{0, 0 } +a23{0, 1} --~a43{ 1 , 1} 

(death/diffusion/decoagulation) 

{1, I} ~ a.,{0, 0} --~-a24{0, 1} +a3,{ 1, 0} 

(pair annihilation/coagulation ) 

These processes take place with equal rates everywhere in the lattice. 
This generalized nearest neighbor exclusion process includes many 

well-known processes, such as the asymmetric exclusion process (~6) (with 
hopping rates a23, a3::~0, all other rates 0), the voter model (16) (with 
death rates and decoagulation rates al2---al3 =a42=a43 : ~ 0 ) ,  o r  Glauber 
dynamics t~9~ (a23 d-a32 = a14 q-a41 # 0). Altogether there are 12 independent 
parameters, one of which is trivial, as one may always change the nor- 
malization ~ without changing the physical properties of the system. We 
shall set ~ = 1 throughout the paper. 
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3. EQUAL-TIME CORRELATION FUNCTIONS 

The equal-time k-point correlation function satisfies the equation 

0 u 
~ ( n , , . . . n , , k ) = - -  ~ ~ (n,,...n..,,kU!")'~, - (3.1) 

a=l j~C (a) 

where, owing to the property (2.15) of the two-site reaction matrix ul al, the 
sum over j does not run over the whole lattice, but only over the union 
C la) of the set of sites {x~ ..... Xk} with the set of their nearest neighbors 
{x I - e  I~) ..... xk--eta)}. It is important to realize that since each u] a) acts 
nontrivially only on two sites, the r.h.s, of (3.1) involves only ( k -  2)-point 
functions, ( k - l ) - p o i n t  functions, k-point functions, and (k+  1)-point 
functions. This can be seen as follows: Suppose one of the x;~ {xl .... , Xk} 
(say Xk) is equal to j + e  ~ .  Using (2.10), one finds 

Ca) ( n,, . . . n,,k_l(nxk U,,k_e,,,) ) = A l ( nx . . . nxk_l ) 

+ B x ( n , , l . . .  n,,k_,n,,~._,~o,> 

- -  C l (  n, ,  . . . n,,k_,n,, ~) 

+ D l < n , q . . .  n,,k_,n~knx~_~,.,> (3.2) 

with 

A 1 --a21 + a 4 1 ,  BI  = a 2 3  + a 4 3  - a 2 1  - a 4 1  
(3.3) 

C l = a 1 2 + a 3 2 + a 2 1 + a 4 ~ ,  D l = C ] - - a 2 3 - - a 4 3 - - a t 4 - - a 3 4  

A similar result arises if one of the x i (again, without loss of generality 
Xk) is equal tO j: 

(nx, ~") =A2(nx, ,> �9 " n x  k_,(n~ ku~k) )  " ' n ~  k_ 

+ B z ( n , , . . .  n~_ln,,k+~l.~) 

- -  C 2 (  nxl . . .  n~_tn~k ) 

+ Dz(n,, , . . .n, ,k_n,,kn,,k+e~.,  ) (3.4) 

with 

A 2 -- a31 --[- a41 ~ B2 = a32 --1- a42 - a31 - a41 
(3.5) 

C2=a13.- l -a23-l -a31- .ka41,  D 2 = C 2 - a 3 2 - a 4 2 - a 1 4 - - a 2 4  

The r.h.s, of (3.2) and (3.4) consist only of ( k - 1  )-point functions, k-point 
functions, and (k + 1 )-point functions. 
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If two of the xi are nearest neighbors in the lattice, e.g., Xk-i = 
X k -  e t~) = j ,  then the action of u~ ~ yields 

< n x l  . . .  ?1 co) . . .  n x k _ ,  > nxk_2(nxk_ t Xk_l+eta)Uxk_l)> = A 3 ( n x ,  

+ B3(nx, . . .n, ,k_, .n, ,k_ , +e~o,) 

+ D 3 ( n , , , . . .  n,,k_,n,,k_ ,)  

- -  C 3 (  n x  I " "  n,,~_z nxk_ l  n,,~_ I +eIa) ) 

(3.6) 

with 

A 3 ~ a41 ,  

D 3 = a43 - -  a 4 1 ,  

B 3 = a42 - a41 

C3 = ~/14 + a24 "}- a34  q- a42  + a43 - -  a41 

(3.7) 

The r.h.s, of (3.6) consists only of ( k - 2 ) - p o i n t  functions, ( k - 1 ) - p o i n t  
functions, and k-point functions. 

If D~ ~ 0 or D 2 ~ 0, the time derivative (3.1) of the k-point correlation 
function gives rise to a set of M coupled differential-difference equations 
involving all k-point correlators.: Solutions to such a set of equations have 
been found in some special cases where subsets of these equations 
decouple, t21) but there is no general solution. On the other hand, if 
Di = D2 = 0, i.e., for 

a34 = a21 -t- a41 + a12 -k- a32 - -  a23 - -  a43 - -  a l 4  

a24 = a31 + a41 n t- a l 3  n t- a23 - -  a32 - -  a42  - -  a14  

(3.8) 

the problem simplifies considerably, as one has a closed system of only k 
equations. In this case Eq. (3.1) may be regarded as an inhomogeneous, 
linear differential-difference equation for the k-point function with ( k -  1 )- 
point and ( k - 2 ) - p o i n t  correlators as inhomogeneities. 

Note that one may also study correlation functions of the operators 
= n - ~  with an arbitrary constant e. One obtains again a closed system 

of k equations for the k-point correlation function if D~ = D 2 = 0, but with 
new constants 

~'~1 = A 1 "4- o~(B 1 - -  C 1 ), /~2 = A 2  + ~ ( 8 2  - C 2 )  (3.9) 

"-In N-part icle systems with particle number  conservat ion the hierarchy breaks  off at  
k = N < ~ M .  
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and 
4 3 = A  3 +0~(B 3 + D 3 )  -- 0~2C3 

B3 = B3 -- or.( C 3 + B 2 - C 1 ) (3.10) 

/33 = B3 - ~(C3 + BI - C2) 

in Eqs. (3.2), (3.4), and (3.6). The B1. 2 and C1.2 do not change. In 
particular,  the inhomogenei ty arising from A1, A2=/=0 in the one-point  
function can be removed by taking cc = p with 

2a41 + a21 --[- a31 A z + A2 
P = 2 a 4 1 + a 2 1 + a 3 1 + 2 a 1 4 + a 2 4 + a 3 4 - C l + C 2 _ B l _ B  2 (3.11) 

With this choice one has 4 1 + A2 = 0. The differential-difference equat ion 
for higher-order correlation functions has then inhomogeneous  terms 
propor t ional  to A3 [coupling to ( k -  2)-point functions] and ~' B3 = B3 + 4 1, 
/3~ =/33 + A2 [ coupling to (k - 1 )-point functions ]. We conclude: 

Equat ion (3.1) becomes a closed, inhomogeneous  linear differen- 
tial-difference equat ion in one (continuous) time coordinate  and 
d . k  (discrete) space coordinates on a 10-parameter  submanifold 
defined by Eqs. (3.8) of the 12-parameter  model. 

One  may  add the remark  that  this differential-difference equat ion becomes 
homogeneous  [i.e., contains no (k - 1 )-point and (k - 2)-point  correlation 

t ~ t  functions] on a seven-parameter  submanifold defined by A3 = ~3 = D 3  = 0. 
F r o m  the derivation presented above it is obvious that  this result is easy 
to generalize to other lattices and interactions. With D1 = D2 = 0, Eq. (3.1) 
is a closed set of k equations independent of  the dimensionality of  the 
system or of  the kind of lattice on which the model  is defined. Fur thermore ,  
the two sites on which the reaction matrix u acts nontrivially are not  even 
required to be nearest neighbors. The result remains true for arbi trary 
long-range interactions with reaction matrices ux.y, where x and y are 
any two points on the lattice. Finally, it is also not  necessary to keep the 
reaction rates akk, space independent as long as (3.8) is satisfied for each 
reaction matrix ux.y. For  the decoupling from lower-order correlators a 
stronger condition is necessary for this general case. Besides D~ = D 2 = 0 ,  
one needs AI = A2 = 43 = B3 =/33 ~--0, i.e., one is left with a f ive-parameter 
space only. 

We demonstra te  this result for the one-dimensional  case. In one 
dimension, Eq. (3.1) for the one-point  function becomes 

0 
(n~,) = --(n.,.(ux_ 1 + u,,)) (3.12) 
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where we have set ( =  1 and dropped the coordinate index a in u j" ca). This 
is easy to calculate and one finds 

0 
Ot (nx> =A, +A2 

+ Bl<nx-l> --(Cl + C2)<n~,> + B2<nx+l> 

+ Dl(nx_lnx> + Dz(nxnx+l> (3.13) 

where the constants with index 1 and index 2 arise from the action of u~_ 
and ux, respectively. One sees that if D~- -D2=0 ,  (3.13) becomes an 
inhomogeneous, linear differential-difference equation. Introducing ~ with 
~ = p  as defined in (3.11) leads to the homogeneous equation 

0 
Ot<g~>=Bl<~x_~>+B2<~+,>-(C,+C2)<~x> (3.14) 

For the two-point function one obtains 

0 
< nxn,,> = -<nx(Ux-t  + u.t)ny> - <n,:ny(Uy_l + uy)> 

= (AI +A2)(<nx> + <ny>) + Bl(<n,,_ln.,, > + (n,:ny_ 1>) 

+ B 2 ( < n x + l n y > + < n x n y + l > ) - 2 ( C l + C 2 ) < n x n : , >  (3.15) 

if x and y are not nearest neighbors and 

a 
0t < nxn"+ 1> = - (n , . nx+  l(ux- l + u~ + ux+ l)> 

=A3+(A2+D3)(nx> +(A] + B3)(nx+ l> 

+ Bl(n~_ln~+l> + B2<nxnt+2> 

- (C1 + C2 + C3)<nxn,~+ l> (3.16) 

for the nearest neighbor correlator. Similar equations are obtained for 
correlators involving g. 

For D1 = D 2 = 0  and the special choice ak~ = a 4 k = 0  (no birth, pair 
creation, and decoagulation) one has A i = B 3 = D 3 = 0 and (3.16) simplifies 
to the completely decoupled, homogeneous equation 

0 
O---t (nxnt+ i > = B] (nx -  lnx+ 1> + B2(nxn.,~+2> 

-- ( Cl + C2 + C3)(n.tn~+ i> (3.17) 

In this case, time derivatives of higher k-point correlation functions also 
decouple completely, i.e., involve only k-point correlation functions. 
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4. DUAL PROCESSES 

The fact that the time derivative of the k-point correlation functions 
may give rise to a closed set of equations is reminiscent of the duality 
relations, e.g., for the symmetric exclusion process, (15"16) where self-duality 
is indeed just an expression of this fact. One may therefore ask whether 
the closure of the equations for the k-point functions is equivalent to the 
existence of some dual process. 

Before we discuss this question we would like to reming the reader of 
the meaning of self-duality (of the symmetric exclusion process) in the 
operator language used in this paper. Let us assume that initially N par- 
ticles are located on a set of sites AN = {Yl, ..-, YN} represented by a vector 
[AN) = [Yl,-.-, YN)- We want to compute the probability ( n , q . . .  nxk)A N of 
finding (any) k particles on sites Bk= {x~ .... , Xk}, at time t. The duality 
relations state (~5'~6:9) 

(nx]'--nx~)AN = ~ (nx;. . 'nx,~)Sk (4.1) 
B'k=A ̂ , 

In this expression the sum runs over all sets B~= {x'] ..... x~} which are 
contained in the set AN, i.e., the k-point correlation function (nx ... nx~)A ~, 
of the N-particle system is given by sums of k-particle correlation functions 
(we assume k<~N). Using (2.10), (2.11), and the fact that H for the sym- 
metric exclusion process is symmetric and SU(2) invariant (i.e., commutes 
with S+), we can derive the duality relations (4.1) as follows(9): 

(n,,  . . .nxk)  Au= (s[ n,q . . .nxke  - m  [AN) 

= Z  <0l s + ' '  .s+ e - m  I_n><_nl e s+ JAN> 
_n 

= ~  (AN[ e s- [_n>(x, ..... xk[ e - m  [_n> 
n 

= ~. (x', ..... x~l e -'~T' [Bk) 
B'k ~ A N 

= ~ (s[ n x i . . . n x , :  - m  [Bk) (4.2) 
B'k ~ A N 

where IBk) = Ix] .... , Xk)- Because of particle number conservation we have 
substituted (x'~ ..... x~l in the last line by 

(s] nxi...nx~ 

In other words, the averaging is performed over all k-particle states such 
that the sets B'k of occupied sites are contained in the set AN of initially 
occupied sites. These sets B~ arise from the matrix element (ANI  e s- In_> 
together with particle number conservation. 
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Generally we define a duality relation by 

(sl Qe - m  IA)  = ( s l  O'e - m  [A')  (4.3) 

where Q and Q' are some functions of the projection operators nx and I A)  
and IA') are initial states. The dual process P is obtained by taking the 
transposed matrix H r of the time evolution operator and performing some 
suitably chosen similarity transformation V such that 

= V H T V  - t (4.4) 

indeed defines a stochastic process. The observable Q' and the initial condi- 
tion IA') are then given by 

(sl Q ' =  (AI V- ' ,  I a ' )  = VQ Is) (4.5) 

where I . . . )=(( . . . I )  r. By taking V = e x p ( - S - )  and Q = n x l . . . n ~ ,  one 
recovers (4.1) with n = H .  

In this kind of duality the points {xl ..... Xk} occurring in the 
correlator are mapped to an initial state with particles occupying sites 
{xl ..... Xk}. The dual process may be considered as a process describing 
the time evolution of particles on these points. H =  H means that the 
symmetric exclusion process is self-dual. 

After this reminder we are in a position to formulate the problem 
more specifically: We saw in the previous section that as in the symmetric 
exclusion process, the time derivative of the k-point function of the 
generalized model does not involve higher correlators. The transformation 
V= exp( - S -  ) relates the k-point correlator to a k-particle initial state. We 
therefore ask the question whether the dual operator ~ of (4.4) with this 
particular V defines a stochastic process on the ten-parameter manifold 
D~ = D2 = 0. In order to answer this question, one has to check whether the 
transformed dual rates 5k~ satisfy (2.14) (guaranteeing conservation of 
probability) and the condition of positivity 5kl >/0 for k 4: l. 

A short calculation gives for the dual matrices 

- ta l_  - C 1  B~ B 3 (4.6) 
uj - -- Bl z D3 

0 --  C3 {j;a) 

with the quantities Ai, Bi, Ci defined by (3.3), (3.5), and (3.7), respectively. 
Using positivity and conservation of probability, we can read off the condi- 
tions for the existence of a dual process, namely A~, B ,  D 3/> 0 and 

Ai + B1 - C1 = A 2 +  B2 -- C2 =A3 +B3 +D3 -- C3 = 0  



256 SchOtz 

Note that the condition 

C 3 = a42 q- a43 - -  a41 + a ] 4  q- a24  -~- a34  

= A 3 + B 3 -k- D 3 = a42 + a43 - -  a41 

implies ak4 ---- 0, Vk, because of the positivity of the original rates. 
The dual process H has only hopping terms B t and B2 and various 

nonvanishing annihilation rates, but no particles are created. Thus the 
duality relations (4.3) with Q = n,,~...n,, k read 

(n~, . . . n~ )A^ ,=N(0I  e -/:/' IBk) + ~ (Yl e - m  IBk) 
y e A N  

+ ' "  + ~ (Yl, .-., Ykl e - n '  [Bk> 
yl,.. . ,yk~AN 

k 

= ~ ~, (s[ Q'(p)IBk) (4.7) 
p r O  B'pcA N 

where Q' (p )=Ppny j . . . n yp  and Pp is the projector on p-particle states 
arising from the matrix element (AN[ e s- l~_2). The averaging extends 
therefore over all p-particle states with 0 ~< p ~< k such that the sets B~ of 
occupied sites are contained in the set AN of initially occupied sites. Note 
that (4.7) holds for any choice of the parameters A~, B~, D 3, irrespective of 
whether B defines a stochastic process or not. 

One may define other dual processes involving other operators Q. The 
main requirement for the kind of dual processes in which we are interested 
is that the set of sites Bk defined by the product of projectors n~ translates 
into an initial configuration of occupied sites. This feature determined 
the transformation V. The results of the preceding section indicate that it 
might be interesting to study correlation functions of the shifted density 
projectors t ~ =  n x - ~ .  We introduce the local operator 

and 

wj= _ 1 - ~  j 

W= l--[ wj (4.9) 
J 

It is easy to check that (sl wi = (sl and (sl nj = (sl (n j -~ )wj .  Therefore 

(s[ ~x~ ""  nxk = (sl n, ,~ . . .n~ W (4.10) 
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and 

(~x, . - .  gXk)A = (sl nxt . . .nxke - w '  IA')  (4.11) 

with H ' =  W H W  -~ and the transformed initial state I A ' ) =  W I A ) .  Now 
one may apply (4.7) to (4.11). Averaging is now performed over the 
weighted set of states _n with total particle number p ~< k and with weights 
fA(Y, . . . . .  Yk)= (A'I e s- lYt .... , Yk): 

(nx ,  "'" nx , )A = ~ fA(Yl ..... Yk)(Yl ..... Y,I e - ~ '  [B,)  (4.12) 
YI,.. . ,Yk 
O~p~k 

One obtains the dual time evolution operator ffI= V( W H W  -~)r  V-~ with 
the doubly transformed dual reaction matrices 

if!o) = _ - C~ B: /~3 
-J Bl - C 2  /33 

0 - C3 (j:,) 

(4.13) 

where the quantities defined in Eqs. (3.9), (3.10) are used. Positivity and 
conservation of probability yield again the conditions on the existence of 
the dual process defined by H. 

We conclude that: 

The closure of the differential-difference equations for the k-point 
density (or shifted density) correlation functions does not, in 
general, imply the existence of a dual stochastic process as discussed 
here. Additional constraints on the original reaction rates arise in 
order to conserve probability and positivity for the dual process. 

Other duality relations and dual processes may be obtained by considering 
other correlation functions (~2) or transformations to other initial states. 

5. THE HEISENBERG H A M I L T O N I A N  

In the previ6us section we have shown that on a 10-dimensional sub- 
manifold of the 12-parameter problem all equal-time correlation functions 
can be calculated by solving (in)homogeneous, linear differential-difference 
equations. From the solutions to these equations one may obtain the spec- 
trum of H, (2.12), by looking for the poles of the Laplace transform of the 
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correlation function. From the one-point function (3.1) or (6.1) below one 
finds a series of eigenvalues 

d 

E ( k ) =  ~ (B,eik"+B2e-ik"--Ci--C2), 0~<ka<2z~ (5.1) 
a = l  

which may be interpreted as nonrelativistic, free single-particle excitations. 
The full spectrum would be obtained from the solution to all correlation 
functions. From (5.1) we find that the system is partially integrable in any 
number of space dimensions. Note that in the discussion in the previous 
section the positivity of the constants a,~ was only necessary for the inter- 
pretation of H as generating as stochastic process. The partial integrability 
of H is ensured by the constraints (3.8) alone. 

In order to get some insight into the physical origin of the one-particle 
excitations and of the structure of the equations for the higher-order 
correlators we study the relationship of the stochastic Hamiltonian (2.12) 
to the Heisenberg quantum Hamiltonian defined below. This is motivated 
by the symmetric exclusion process, in which case (2.12) is the Hamiltonian 
of the isotropic Heisenberg ferromagnet. 

In this section we show that: 

The spectrum of H, (2.12), with the constraint (3.8) is identical 
to the spectrum of the Hamiltonian of an anisotropic spin-l/2 
Heisenberg quantum Hamiltonian Hxx z in a magnetic field. The 
behavior of the k-point correlation functions is determined by the 
excitations of the p-magnon sector, where 0 ~< p ~< k. 

The ferromagnetic Heisenberg quantum Hamiltonian H:~.xz is of the 
same form as (2.12), but with matrices 

x x h~ ~  - ~ (~j oj +.,o, + o;'o;'+ o,o, + ~o;~ ;+  o,o, +/~, o;  + 1~2o;+ e,o, + c) 00) 
: ~ 

0 h44 tj;a) 

(5.2) 

where we have chosen the normalization y = 1 and the constant c = 
--(b I + b 2 + A  ) such that h,, =0,  h22 = --(fl2+A), h33 = - - ( i l l - - [ -  .4) ,  h44 = 
-fll--fl2, and h23=h32=1. This Hamiltonian has a continuous U(1) 
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symmetry generated by S-'= ~j a;/2. Hence Hxx z splits into sectors with 
fixed z component of the total spin. By identifying spin up at site j with a 
vacancy and spin down with a particle, this U(1) symmetry amounts to 
particle number conservation. The sector with S~= M / 2 - N  corresponds 
to the N-particle sector. 

In order to make contact with the reaction matrices ul ~ we study the 
dual matrices ffJa), (4.6), which were obtained from the original reaction 
matrices by the similarity transformation V and transposition (4.4). First 
we renormalize t7 by a factor ~ = (B] B2) ~/2 and perform another similarity 
transformation ~=(~H~0-1) /~ ,  where ~ = e x p [ Z i ( j - 1 1 ) a j ]  and I1= 

d e(a) = ~ - ] a = l  with rI=(BI/B2) ~/2. For A I = A 2 = A 3  B 3 = D 3 = 0  this 
manipulation yields matrices 

(i ~176 
~ a )  = - -  /~22 1 

1 /~33 
0 0 /'l 4.4 (j;a) 

(5.3) 

with ~,] =0 ,  ~22 = Ci/~, /d33 = C2/~, ~144~-C3/~, / ~ 3 2 = / , ~ 2 3 = 1 -  These 
matrices are identical to the Heisenberg matrices (5.2) for an appropriate 
choice of fl,, f12, and zt. Therefore on the five-parameter submanifold of the 
general model on which one obtains completely decoupled equations for 
the k-point correlation functions one f inds /~=  Hxxz.  3 The duality trans- 
formation turns the state (sl ~x,'"r~xk, (4.10), appearing in the k-point 
correlation function (4.11) into a k-particle initial state. Since Hxxz  (and 
the transformed stochastic Hamiltonian/7) conserves particle number, one 
finds that the correlator is given by the k-magnon excitations of the 
Heisenberg quantum Hamiltonian. 

In order to understand the more general ten-parameter manifold D1 = 
D2 = 0 we split the transformed dual reaction matrices into two parts 

0 0 ~3 
hi(a) = - -  0 0 J~3 (5.4) 

0 0 0 (J;~l 

~ 1  = h~a~ _ h;(-~, with 

3The transformation r relates the symmetric model h23=h32 to the asymmetric model 
h23r see refs. 6, 12, 23, and 24 for the one-dimensional case. It induces nonperiodic, 
twisted boundary conditions, i.e., the constants ~23 and a32 in the boundary matrices are 
different from those in the bulk matrices ~I "~. The Hxxz a n d / 7  agree in general only up to 
boundary terms. 
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Thus one may write ~ =  H x x z  + H'. The crucial point is that H x x z  con- 
serves particle number and may therefore be block diagonalized in blocks 
with fixed N. On the other hand, H'  connects a block with particle number 
N with blocks with particle numbers N -  1 and N - 2 ,  but not with any 
N' >t N. The whole matrix ~ has therefore a triangular structure with block 
matrices labeled by N arising from H x x z  on the diagonal and matrix 
elements resulting from H'  on the upper off-diagonal. The characteristic 
polynomial of ~ does not depend on these off-diagonal entries and there- 
fore the characteristic polynomials of the stochastic Hamiltonians H, 
[(2.13 and (4.8)] and the Heisenberg Hamiltonian H x x  z [see Eq. (5.2)] 
are identical. 4 The full dynamics of the k-point correlation function is 
determined not only by the eigenvalues of the time evolution operator, but 
also by the eigenstate. Since H'  annihilates only, eigenvalues and eigen- 
states with p ~< k particles contribute to the dynamics. This explains the 
partial integrability of the model: To the one-point function k = 1 only the 
one-magnon sector contributes. This is indeed a nonrelativistic free particle. 
It is interesting to note that in one dimension, H x x z  is completely 
integrable. In this case the eigenvalues may be found from the Bethe ansatz. 

6. THE AVERAGE DENSITY 

In this section we give an application of the results of Section 3. The 
simple form of Eq. (3.1) for the shifted average particle density on a hyper- 
cubic lattice, 

d 

(6.1) 

allows for an explicit integration and thus the extraction of the critical and 
noncritical behavior of the system. We define 

1 /B2\  
C = C I + C 2 ,  D = 2 ( B I B 2 )  1/2 , o~ = ~ ,  In 1--~-1 (6.2) 

z a  \ / ~ 1 /  

and the vector r  y.a=~ e(,,~ and study first the infinite system. In d 
dimensions the solutions ~(x, t ) = ( g , )  to (6.1) is given in terms of 
modified Bessel functions I,,(x) by 

d 

fi(x, t) = ~" a,{exp[ - -dCt  + o ~.  (x - y)] } I-I Ix~ 
y a ~ l  

(6.3) 

4 The  same  a r g u m e n t  was  used in ref. 13, bu t  on  a n o t h e r  subman i fo ld  o f  the p a r a m e t e r  space.  
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with initial condit ion fi(x, 0) = ax. With ax = a 6 x ,  y and for large times t and 
large separat ions r 2 =  ( x - - y ) Z  with r2/t fixed this may  be written 

fi(r, t) = ae-a~"(2r~ Dt) -d/2 e - i r -e  o,)2/zo, (6.4) 

and the physical interpretat ion of the constants  becomes apparent .  D plays 
the role of  a diffusion constant,  while ~ is a driving field leading to an 
average drift velocity v = Dg .  F rom this we find that  the system satisfies the 
Einstein relation 

(0v 
, 

0 - - ~ j , , o , =  o = D (6.5) 

The constant  

p = C -  1 + - ~ -  D (6.6) 

is a decay constant.  For  /~ = 0 the system is critical with dynamical  
exponent  z = 2. 

For  a finite-size scaling study of the density on a hypercubic lattice we 
consider a one-dimensional  system with L sites. The solution of (6.1) with 
periodic boundary  condition and initial condit ion p(x,O)=a6x.y (with '  
1 <<.x, y<<.L and r = x - y )  is 

I L-' { ~ + [ 2 C _ ( B , + B 2 ) c o s _ _ f f _ _ i ( B , _ B z ) s i  n 

(6.7) 

Introducing the scaling variables u =n [r+(B~- -Bz ) t ] /L  and r =  
2n(B~ + Bz) t/L 2 and taking the limit L --* ~ ,  we find that  this becomes 

1 
fi(u, z) =L e-u"O3(u I iv) (6.8) 

with the decay cons tan t / z '  = C -  B1 --  B2 and the Jacobi theta function 

03(u I iv ) = ~. e - "2 '+2i 'u  (6.9) 
n =  - - 0 9  

Equations (6.7) and (6.8) describe a density distribution of width A = 
B~+B2=Dcoshg with its center at  x = y - v t ,  where v = B ~ - B 2 =  
D s inhg .  The Einstein relation (6.5) therefore holds also in the finite 
system. Note  that  when taking the scaling limit we have implicitly assumed 
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that ~=e/L vanishes proportional to L -]  because otherwise u would 
diverge. This implies A ~ D, v ,,m D~, and/2' ~/2. For/2' = 0 and large values 
of 3, i.e., for times larger than L 2, the density in the moving frame of 
reference decays exponentially to its constant value /~o~ =alL with decay 
constant 2n2D. For small values of �9 the density decays with a power-law 
behavior, fi(0, r ) =  aL-1(2n D~)-  i/2. This may be shown using the Poisson 
resumJnation formula, but is already clear from (6.4). 

Equation (6.1) may be solved for other boundary conditions, such as 
open boundary conditions with injection and absorption of particles. ~25) 
We do not discuss this here. 

If A~, A 2 50 ,  the constants B~ and B2 can be negative. On bipartite 
lattices this leads to an alternating positive and negative (relative) density 
/~(x, t). For other lattices the situation is more complex. 

7. C O N C L U S I O N S  

We have studied a general reaction-diffusion process of hard-core 
particles with two-site interactions on a lattice in d dimensions. There are 
12 parameters (2.16) for the various reaction and diffusion rates. On a ten- 
parameter submanifold defined by (3.8) of the parameter space the differen- 
tial-difference equations (3.1) satisfied by the k-point density correlation 
functions are inhomogeneous linear equations involving no higher-order 
correlators. We have mainly considered a d-dimensional hypercubic lattice 
with nearest neighbor interaction and space-independent rates, but this 
result holds for arbitrary lattices with arbitrary two-site interactions as 
long as (3.8) is satisfied for the interaction between each pair of sites. On 
a d-dimensional hypercubic lattice with periodic boundary conditions 
Eqs. (3.1) decouple completely on a seven-parameter submanifold. 

It is perhaps worthwhile pointing out that throughout Sections 3-5 we 
have assumed that initially N particles are located on a set of sites 
{x~ ..... xN}. All calculations can be easily repeated for an arbitrary, time- 
dependent initial distribution. In this way one can get similar results for 
two-time correlation functions. 

We have shown that in general the decoupling from higher-order 
correlators does not imply the existence of a dual process for the time 
evolution of a k-particle initial state as one has in the special case of the 
symmetric exclusion process. This remains true only under further assump- 
tions on the reaction rates arising from conservation of probability and 
positivity of rates in the dual process. The dual process to the general 
ten-parameter model (if it exists) is a process involving only diffusion and 
annihilation of particles (death, decoagulation, and pair annihilation), but 
no creation. 



Reaction-Diffusion Processes of Hard-Core Particles 263 

The Hamiltonian (2.13) defining the stochastic process is partially 
integrable and has the same spectrum as a spin-l/2 Heisenberg quantum 
Hamiltonian Hxxz in a magnetic field and with twisted boundary con- 
ditions. This explains the occurence of the nonrelativistic one-particle 
excitations appearing in the time evolution of the density profile in terms 
of one-magnon excitations of the Heisenberg model. The dynamics of the 
k-point correlators are given by p-magnon states with p ~<k. In one 
dimension, Hxxz is completely integrable and its spectrum can be found 
from the Bethe ansatz. However, it is interesting to note that even though 
for DI = D2 = 0 the spectra of H and Hxx z are identical, the matrices uj 
do not, in general, satisfy the Hecke algebra relations ujuj• 
uj•177177 [u~, uj] = 0  for l i - j l  t>2 and uf=,~.uj. (13'14) Through 
Baxterization, t22) this would imply the integrability of the model as in the 
case of the normal Heisenberg Hamiltonian (5.2). This observation hints at 
a more general algebraic structure beyond the usual conditions for inte- 
grability in one dimension. 

In Section 6 we used our results for the exact calculation of the time 
evolution of the density from an arbitrary initial density and analyzed its 
finite-size scaling behavior in the scaling regime t ~ L 2 (L is the size of the 
system). An initially sharp peak in the distribution widens diffusively and 
moves with a constant average velocity. It turns out that the model satisfies 
the Einstein relation (6.5) relating the drift velocity and the diffusion 
constant. Depending on the various reaction rates, there is a noncritical 
region with an additional exponential decay of the amplitude. Thus the 
time evolution of the density profile on a d-dimensional hypercubic lattice 
with periodic boundary conditions depends only on four combinations of 
the ten parameters. For other boundary conditions or lattices more 
parameters enter and it would be interesting to study the corresponding 
lattice effects. The lattice diffusion constant may be zero or even negative. 
The latter case corresponds to the development of an alternating structure 
of the average density on bipartite lattices before reaching the constant 
stationary density. Another open question is the behavior of the density- 
density correlation function in the general ten-parameter model. This 
quantity may be nontrivial even in the steady state, as only under strong 
restrictions on the rates is the steady state a product measure. 
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